

Smart Farming with Raspberry PI Pico and
WIZnet Ethernet Hat

by peppe8o (Giuseppe Cassibba)
Blog: https://peppe8o.com

Linkedin Profile: https://it.linkedin.com/in/giuseppe-cassibba-0312266

IoT devices have wide industry application fields. But they can also help
improving some sectors such as agriculture to better use resource and
keep under control your production

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 2 of 25

In this tutorial I’m going to show you how to create a smart farming architecture
by using a Raspberry PI computer board as central processing and data
presentation, while Raspberry PI Pico microcontroller with WIZnet Ethernet HAT
will collect data from your farm.

Please note that the steps covered in this tutorial should also work with the
W5100S-EVB-Pico board.

The Goal

High-density farming usually consumes a lot of resources as some maintenance
and growth tasks are based on time-frequency instead of real plant’s needs.
Moreover, adverse weather conditions (like temperature too low or humidity out
of supported values) can cause damages to crops if not managed in time. All of
these tasks are even harder to keep under control in the case of big areas.

Having a monitoring automation system can help farmers, warning them when
pre-fixed conditions are in progress. With a bit more integration, some
electronic controls can also be activated, so also automating countermeasures
to get your crops safe.

Moreover, by integrating
controls to activate/deactivate
external devices like, for
example, electrical water
valves, you can set farm
maintenance to work when
and only when it is required (and not simply based on timing). Still, on watering
example, you can think of your farm divided into sectors each one controlled by
a Raspberry PI Pico / WIZnet Ethernet HAT, DHT11 sensor and soil moisture
sensor. Each sector will enable its watering valve only when the soil moisture
goes below a specified threshold value. The watering task can be less than the
common manual watering time: this will allow a lower water dispersion and the
required moisture percentage will be satisfied from a more frequent watering as
everything will be automated. Less water dispersion means fewer world
resources usage and a greener world.

This project aims to create a fully open source and fully customizable solution
which uses an IoT architecture collecting data from the field and sending them
to a low cost centralized server (it can be a Raspberry PI computer board like
Raspberry PI 3/4 Model B).

Data will be sent via MTTQ messages and organized into powerful dashboards
with Thingsboard, which can set warnings and activate related tasks.

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 3 of 25

Within this project, I’ll use a Uperfect
touchscreen display to show our Smart Farm
dashboard. Even if not strictly required, this
display is a great solution for a wall mount as
its backpack can host a Raspberry PI Model B
and it already has holes to install on a wall in a
kiosk-like configuration. But you can also use
only the Raspberry PI alone and see the
resulting dashboard from a remote device with
a common browser (like a smartphone, tablet
or PC).

I’ll assume we are going to manage a farm divided into 2 main areas (maybe, for
example, corn in one area and vegetables in the second one). A picture of this
hypothetic farm can be the following:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 4 of 25

Each area will be divided in a number of sectors, each one representing a
measurement sample. The following picture shows sectors inside the areas:

The following picture shows the general architecture for this project. Raspberry
PI Pico and WIZnet Ethernet HAT will collect sensors data from Areas and
Sectors, transmitting them to the main mind of the project: a Raspberry PI 3
model B (or newer) computer board hosting ThingsBoard. This RPI can also be
set to show dashboards with a touchscreen display (I will show you the
Uperfect display, as it natively integrates a backpack for Raspberry PI
computers). You can replicate this architecture for as many sectors as you need.
The project modularity will allow you to reuse code and adapt it easily to your
sensors. Sector level can also control small devices as solenoid valves to
activate watering in specified conditions.

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 5 of 25

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 6 of 25

What We Need

As usual, I suggest adding from now to your
favourite e-commerce shopping cart all needed
hardware, so that at the end you will be able to
evaluate overall costs and decide if continue with
the project or remove them from the shopping
cart.

So, hardware will be only:

 Raspberry PI 3 Model B (including proper power supply or using a
smartphone micro usb charger with at least 3A) or newer Raspberry PI
Board

 high speed micro SD card (at least 16 GB, at least class 10)
 a USB/wireless keyboard
 Raspberry PI Pico Microcontroller (with a common micro USB cable)
 WIZnet Ethernet HAT
 breadboard (for prototype)
 dupont wirings (for prototype)
 Uperfect monitor
 DHT11 temperature and Humidity Sensor
 any other sensor needed for your farm

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 7 of 25

Step-by-Step Procedure

Install Raspberry PI Computer OS

Start installing the Raspberry PI OS in your RPI computer board (Raspberry PI 3
Model B/B+ or Raspberry PI 4 Model B).

If you are going to use it as a stand-alone server, you can install Raspberry PI OS
Lite and then move to the “Install ThingsBoard” chapter. in this way, you’ll be
able to access your dashboard from any device with a browser running on the
same network with the Raspberry PI computer or able to reach it (with a VPN or
by exposing Thingsboard to the internet after securing this.

On the other hand, if you want to use a touchscreen with your RPI computer,
you have to install Raspberry PI OS Desktop. Please, mind enabling SSH remote
access as explained in the referred tutorial. This way you’ll be able to use
ThingsBoard from preferred your remote device, but you will also be able to
keep a monitor showing the dashboard (for example with a wall mount).

Add Uperfect Touchscreen (optional)

Adding a Uperfect touchscreen is a very simple task, as the producer already
gives a very good tutorial, I’ve reviewed this device in my Raspberry PI
Touchscreen: reviewing the Uperfect RPI All-In-One article. Moreover, as an
additional tip, you can also use my Raspberry PI Kiosk: creating a touchscreen,
informative stand to make the dashboard appear (with a fullscreen) at its boot.

Install Thingsboard on Raspberry PI

Now, it’s time to install ThingsBoard. Also here, all the required steps and tricks
to improve performances have been detailed in my ThingsBoard and Raspberry
PI (part 1): getting a Professional IoT dashboard tutorial. Basically, the main
operations here are:

 Install Java
 Download ThinksBoard deb package
 install ThingsBoard
 Install Postgres database
 Configure a new database for ThingsBoard
 Prepare ThingsBoard configuration file
 Initialize and run ThingsBoard

Configure the new Thingsboard Tenant

With ThingsBoard installed, you have to create your first tenant from the System
Administrator console. Also, this part is detailed in my second tutorial on
ThingsBard: ThingsBoard and Raspberry PI (part 2): Add Device telemetry by
MTTQ and Python.

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 8 of 25

Think of the tenant as a space collecting all the projects having a common
customer. You can create as many tenants as you want, but if this project will
serve only your spaces, then one single tenant will be enough.

So, the operations are the following:

 From System Admin dashboard, create a new tenant
 With the created tenant, create a tenant Admin and activate it (during

thetenant activation stage, an activation link will be provided). From here,
you can logout the System Admin and continue on Tenant Admin console

 Create a new Device

During the device creation, I suggest thinking of using a naming convention for
devices able to keep you aware of what the device represents. For example, a
naming like Pico#1, Pico#2, and so on will be enough for the prototyping stage,
but it will be hard to manage in production, where something like “Area xx,
Sector yy” could be far better. Anyway, you can modify the device label during
usage.

When you create the new device, please note that with Raspberry PI Pico and
WIZnet Ethernet HAT you have to set the Device Credentials to MQTT Basic.
This will be something similar to the following picture:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 9 of 25

Of course, please set your User Name and password according to your
preferences.

Wiring the Raspberry PI Pico and WIZnet Ethernet HAT

For the prototype, you can get help from a breadboard for cabling. The WIZnet
Ethernet HAT uses GP from 16 to 21 to communicate with Raspberry PI Pico,
besides the Power/ground connection (a great improvement for the future of
this HAT can be getting Power Over Ethernet, so becoming the power source
for the Pico). Cabling must be set according to the following picture:

Setup the MicroPython code (and test)

Install the Raspberry PI Pico MicroPython firmware. At the time of this post, I
suggest using the one from the WIZnet page on GitHub (you can download it by
following the direct link -> firmware.uf2). To install it, you can also refer to
my W5100S-EVB-Pico: A Raspberry PI Pico with Ethernet port tutorial, as using
the W5100S-EVB-Pico or the WIZnet Ehetnet HAT is the same.

Once installed the firmware, get the following two files from Wiznet libraries
page on GitHub:

 umqttsimple.py
 urequest.py

Copy these files in your Raspberry PI Pico root folder or inside a “lib” folder (as
explained in my Adding external modules to MicroPython with Raspberry PI
Pico).

Create a new “main.py” file in your Raspberry PI Pico root folder and add the
following code:

from umqttsimple import MQTTClient

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 10 of 25

import time
import ubinascii
from machine import Pin,SPI
from usocket import socket
import network
import rp2

#mqtt config
mqtt_server = '192.168.1.91'
client_id = 'Pico#1'
user_t = 'pico'
password_t = 'pico'
topic_pub = 'v1/devices/me/telemetry'

last_message = 0
message_interval = 5
counter = 0

#W5x00 chip init
def w5x00_init():
 spi=SPI(0,2_000_000, mosi=Pin(19),miso=Pin(16),sck=Pin(18))
 nic = network.WIZNET5K(spi,Pin(17),Pin(20)) #spi,cs,reset pin
 nic.ifconfig(('192.168.1.20','255.255.255.0','192.168.1.1','8.8.8.8'))
 while not nic.isconnected():
 time.sleep(1)
 print(nic.regs())

#MQTT connect
def mqtt_connect():
 client = MQTTClient(client_id, mqtt_server, user=user_t,
password=password_t, keepalive=60)
 client.connect()
 print('Connected to %s MQTT Broker'%(mqtt_server))
 return client

#reconnect & reset
def reconnect():
 print('Failed to connected to MQTT Broker. Reconnecting...')
 time.sleep(5)
 machine.reset()

def main():
 w5x00_init()
 try:
 client = mqtt_connect()
 except OSError as e:
 reconnect()

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 11 of 25

 while True:
 try:
 client.publish(topic_pub, msg='{"Temperature":19.6}')
 client.publish(topic_pub, msg='{"Humidity":53.0}')
 print('published')
 time.sleep(3)
 except:
 reconnect()
 pass
 client.disconnect()

if __name__ == "__main__":
 main()

Please change the following parts according to your installation:

mqtt_server = ‘192.168.1.91’ -> Raspberry PI (ThingBoard) server IP address

client_id = ‘Pico#1’ -> MTTQ credentials set on ThingsBoard

user_t = ‘pico’ -> MTTQ credentials set on ThingsBoard

password_t = ‘pico’ -> MTTQ credentials set on ThingsBoard

nic.ifconfig((‘192.168.1.20′,’255.255.255.0′,’192.168.1.1′,’8.8.8.8’)) -> Your Network
configuration for your Raspberry PI Pico

This configuration will start sending MTTQ messages to your ThingsBoard. For
this test, we’re sending static messages for “Temperature” and “Humidity”
variables, set respectively to 19.6 and 53.0. You can edit these messages at your
choice, also depending on your sensors, as we’ll see in the next paragraph. The
format has to be “telemetry_name: televetry_value”. Please note that you are
free to choose whatever name you want to give to your telemetry variable.

Also, note the sleep(3) line. It adds 3 seconds delay on each measurement. As
your devices increase in number, it is a good practice to reduce the number of
messages sent to the Raspberry PI server in order to keep good performances
and avoid overload.

To check that the communication worked properly, in your ThingsBoard
Dashboard (as Tenant Admin) go to Devices, click on your Raspberry PI Pico
entry and select the “Latest Telemetry” tab. You should see something like the
following:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 12 of 25

If so, your Raspberry PI Pico is correctly connecting, authenticating and sending
messages and you can proceed with the next step.

Add Sensors

For this tutorial, we’re going to add a DHT11 temperature and humidity sensor. It
is a cheap sensor giving good temperature and humidity measurements for
farming purposes. It requires 3,3V power, besides a GND connection, and a data
PIN. The wiring can be arranged according to the following diagram:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 13 of 25

Please find below some pictures from my lab:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 14 of 25

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 15 of 25

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 16 of 25

Download the “dht.py” file from GitHub repository of ikornaselur.

You can also download a copy of it from my download area with the following
link:

 dht11.py

Add this file in your Raspberry PI Pico library path (so, in the root folder or in
your lib folder). We can now modify the main.py code in our Raspberry PI Pico
with the following (changes compared to the previous file are highlighted in red,
but remember to keep the same IP/authentication settings from the previous
stage):

from umqttsimple import MQTTClient
import time
import ubinascii
from machine import Pin,SPI
from usocket import socket
import network
import rp2
from dht import DHT11, InvalidChecksum

#dht11 config
dhtPIN = 15
dhtSensor = DHT11(Pin(dhtPIN, Pin.OUT, Pin.PULL_DOWN))

#mqtt config

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 17 of 25

mqtt_server = '192.168.1.91'
client_id = 'Pico#1'
user_t = 'pico'
password_t = 'pico'
topic_pub = 'v1/devices/me/telemetry'

last_message = 0
message_interval = 5
counter = 0

#W5x00 chip init
def w5x00_init():
 spi=SPI(0,2_000_000, mosi=Pin(19),miso=Pin(16),sck=Pin(18))
 nic = network.WIZNET5K(spi,Pin(17),Pin(20)) #spi,cs,reset pin
 nic.ifconfig(('192.168.1.20','255.255.255.0','192.168.1.1','8.8.8.8'))
 while not nic.isconnected():
 time.sleep(1)
 print(nic.regs())

#MQTT connect
def mqtt_connect():
 client = MQTTClient(client_id, mqtt_server, user=user_t,
password=password_t, keepalive=60)
 client.connect()
 print('Connected to %s MQTT Broker'%(mqtt_server))
 return client

#reconnect & reset
def reconnect():
 print('Failed to connected to MQTT Broker. Reconnecting...')
 time.sleep(5)
 machine.reset()

def main():
 w5x00_init()
 try:
 client = mqtt_connect()
 except OSError as e:
 reconnect()

 while True:
 try:
 dht_temp=dhtSensor.temperature
 dht_hum=dhtSensor.humidity
 client.publish(topic_pub, msg='{"Temperature":'+str(dht_temp)+'}')
 client.publish(topic_pub, msg='{"Humidity":'+str(dht_hum)+'}')
 print('published')

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 18 of 25

 time.sleep(3)
 except:
 reconnect()
 pass
 client.disconnect()

if __name__ == "__main__":
 main()

This version adds the DHT11 measure checks, associate them to variables and
adds them to the MTTQ message. Please note that the str() function converts
numbers to strings in order to ship the message correctly.

The same logic can be applied with whatever sensor you need (for example, a
soil moisture sensor). Get the sensor libraries (if needed) for MicroPython, create
a variable that stores the value and send the MTTQ message with the telemetry
name and value. These values will be shown in your ThingsBoard telemetry,
updated in real-time with the latest value.

Adding Alarms and Trigger

Alarms can be managed at the ThingsBoard level with Device profiles. Think of
a device profile as something that makes it possible for you to set when the
device creates a state which can generate a trigger to perform an action. This
doesn’t mean that we are creating the action, here we’re defining the conditions.
For example, you can create a new IoT Pico profile that generates a critical
alarm when the temperature exceeds 25 degrees, getting a device profile like
the following:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 19 of 25

You can then associate your Raspberry PI Pico to this profile so that it will create
this alarm every time the temperature measured from the device exceeds this
threshold. Please note that this alarm is generated at ThingsBoard level, so the
RPI Pico won’t be aware of the alarm. When you create a new device profile and
you want to apply it to an existing device, please remember to edit the device
and associate it to the new profile.

Triggers, on the other hand, can be set both at Raspberry PI Pico level and
ThingsBoard level. Triggers at the ThingsBoard level are those needing high-
level management: sending a warning email/SMS, activating a water pump or a
conditioning system could need a higher logic not available at the RPI Pico
level. These actions will be managed from ThingsBoard with the Rule Chains
(for this topic, please refer ThingsBoard Rule Chains docs). Again, when a new
rule chain is created, remember to associate the Device to the related rule
chain.

Smaller actions, like activating a solenoid valve, can be probably managed at
the Raspberry PI Pico level, where the alarm is generated. In this case, you can
edit the main.py code to activate the action when the measure overcomes the
desired threshold.

Design Thingsboard Dashboard

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 20 of 25

Already from the installation of the first device and once telemetry messages
are collected from ThingsBoard, you can draw your dashboard summarizing the
overall status. For example, you can add an alarm table (that will show alarms
once a device profile defines what must raise an alarm) and digital gauges
representing your measures. Dashboards are visual representations composed
of widgets. Every widget shows a telemetry value (or a measurement in
general) in a graphic form that you can choose when adding it. When you add
your very first widget, you can also choose to create a new dashboard or add it
to an existing dashboard.

Go to the Devices menu, select your Raspberry PI Pico device, go to the
telemetry tab and select one of your telemetry data. This will activate a “Show
on widget” button:

In next window you can choose the kind of bundle (widget) you prefer by using
the drop-down menu:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 21 of 25

Also, navigation buttons will appear on right and left sides of the preview to
change the appearance of the selected widget. In the end, the “Add to
Dashboard” button will let you choose to create a new dashboard or add the
widget to an existing one. I’ve created in my installation a new dashboard
named “SmartFarm” and repeated the process for Temperature. The new
dashboard will be available from the left menu on ThingsBoard console by
selecting “Dashboards”, clicking the one just created and then “Open
Dashboard”.

In the dashboard view, you will be able to edit and customize it from the pencil
button on bottom-right side of the screen:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 22 of 25

Besides resizing existing widgets, dragging them around the screen and
customizing fonts, labels and so on, it will let you also add new widgets with the
“Create new widget” button that will appear. For example, from here you can
add an Alarm Widget showing active alarms. A first dashboard example will
appear like the following picture:

You can also decide to create several dashboards, keeping some of them
private and some public. From the Dashboards menu, you can make a
dashboard public in order to show it without the need to login every time you
need to show it (for example in our kiosk configuration). In this case, please
select our dashboard on ThingsBoard and press the button “Make Dashboard
Public”. The public link for your dashboard will appear:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 23 of 25

You will use this link in your Kiosk configuration. At the same time, to see data
on the public dashboard you need to mark also your device as public (in the
sense that data collected for this device from ThingsBoard are to be set as
public). So, go to the devices list on ThingsBoard, select the device(s) to get
appearing as public and mark it/them with the button “Make device public”.

A proof of concept of a kiosk showing the ThingsBoard dashboard can be the
following picture:

With the following dashboard screenshot:

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 24 of 25

 Author peppe8o (Giuseppe Cassibba)

WIZnet Ethernet HAT Contest 2022 Page 25 of 25

Next steps

As already mentioned, getting the Raspberry PI Pico also wired with a solenoid
valve will make it possible to you to automate the watering process so that
irrigation will take place for shorter periods and only when needed. This will
reduce the water used and better benefits will be getting with smaller sectors.

This project doesn’t deep into one of the next things to manage: how to power
the WIZnet Ethernet HAT and Raspberry PI Pico located on your farm. Possible
solutions are:

 keeping power cables going with Ethernet cables
 mixing and then splitting the 5V power within the Ethernet cable: it has

some unused pins able to carry out power. Please note that this could
reduce the max cable lenght because on long sections it may interfere
with Ethernet data

 using a solar power panel: it would be the green solution

Once tested and get your prototype ready and working, you could also think
about designing a PCB that includes the sensors you use and a specific slot for
Raspberry PI Pico and WIZnet Ethernet HAT: this solution will give you a
stronger product, easily replicable and with affordable costs.

As you can see from this project, having the WIZnet Ethernet HAT with
Raspberry PI Pico enables to create a world of applications, Moreover, added
with the power of Raspberry PI computer boards and ThingsBoard, you can
collect all the info coming from your IoT devices and show them into a cool and
fully customizable dashboard.

This is just a proof of concept of what you can do with an Ethernet connection
available to our Raspberry PI Pico. Your limits will be only imagination and the
number/kind of sensors available.

Enjoy!

